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Motion Segmentation
• Segment the video into multiple coherently moving 

objects



Motion and Perceptual Organization
• Sometimes, motion 

is the only cue



Motion and Perceptual Organization
•  Sometimes, motion is the foremost cue



Motion Field
• The motion field is the projection of the 3D scene 

motion into the image



Motion field + camera motion

=>

Length of flow
vectors inversely
proportional to
depth Z of 3d
point

points closer to the camera move more
 quickly across the image plane



Motion field + camera motion
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Motion Estimation Techniques
• Direct methods

– Directly recover image motion at each pixel from 
spatio-temporal image brightness variations

– Dense motion fields, fields but sensitive to 
appearance variations

– Suitable for video and when image motion is small

• Feature-based methods
– Extract visual features (corners, textured areas) and 

track them over multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)



Optical Flow
• Optical flow is the apparent motion of 

brightness patterns in the image
•  Ideally, optical flow would be the same 

as the motion field
• Have to be careful: apparent motion can 

be caused by lighting changes without 
any actual motion



Optical Flow

• How to estimate pixel motion from image H to image I?
– Solve pixel correspondence problem: given a pixel in H, H 

look for nearby pixels of the same color in I

• Key assumptions
– color constancy: a point in H looks the same in I

• For grayscale images, this is brightness constancy

– small motion: points do not move very far

• This is called the optical flow problem



Brightness Constancy

The highlighted region in the right image looks 
roughly the same as the region in the left image



Optical Flow Constraints

• Brightness constancy: 

H(x,y)=I(x+u,y+v)

• Small motion:

• Combining these equations  



The Aperture Problem





The barber pole illusion



The barber pole illusion



Solving the Aperture Problem
• How to get more equations for a pixel?

• Spatial coherence constraint: pretend the pixel’s 
neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per 

pixel



Solving the Aperture Problem
• Prob: we have more equations than unknowns

• Solution: solve least squares problem

– Solved by



• When is this solvable?
– AT A should be invertible
– AT A should not be too small

• eigenvalues λ1 and λ2 of A T A should not be too 
small

– AT A should be well-conditioned
• λ1/ λ2 should not be too large (λ1 = larger 

eigenvalue)



Edge

●  gradients very large or very small
●  large λ1, small λ2



Low-texture region

● gradients have small magnitude
● small λ1, small λ2



●  gradients are different, large magnitudes
●  large λ1, large λ2



Optical flow for tracking
• If we have more than just a pair of frames, we could 

compute flow from one to the next:

• But flow only reliable for small motions, and we may 
have occlusions, textureless regions that yield bad 
estimates anyway...



Motion Estimation Techniques
• Direct methods

– Directly recover image motion at each pixel from 
spatio-temporal image brightness variations

– Dense motion fields, fields but sensitive to 
appearance variations

– Suitable for video and when image motion is small

• Feature-based methods
– Extract visual features (corners, textured areas) and 

track them over multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)



Feature-based matching for motion

• Search window is centered at the point where we last saw the feature, in 
image I1

• Best match = position where we have the highest normalized cross-
correlation value

• Where should the search window be placed?

– Near match at previous frame

– More generally, taking into account the expected dynamics of the object



Detection vs. tracking



Detection vs. tracking

Detection: We detect the object independently in
each frame and can record its position over time,
e.g., based on blob’s centroid or detection
window coordinates



Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
i.e., our expectation of object’s motion pattern.



Tracking with dynamics
• Use model of expected motion to predict where objects 

will occur in next frame, even before seeing the image.

• Intent:
– Do less work looking for the object, restrict the search.
– Get improved estimates since measurement noise is tempered 

by smoothness, dynamics priors.

• Assumption: continuous motion patterns:
– Camera is not moving instantly to new viewpoint
– Objects do not disappear and reappear in different places in 

the scene
– Gradual change in pose between camera and scene



Tracking as inference
• The hidden state consists of the true parameters we 

care about, denoted X.

• The measurement is our noisy observation that results 
from the underlying state, denoted Y.

• At each time step, state changes (from Xt-1 to Xt) and 
we get a new observation Yt

• Our goal: recover most likely state Xt given

– All observations seen so far.

– Knowledge about dynamics of state transitions.



Independence Assumptions
• Only immediate past state influences 

current state

• Measurements at time i only depend on 
the current state



Tracking via deformable contours
• Use final contour/model extracted at frame t as an 

initial solution for frame t+1

•  Evolve initial contour to fit exact object boundary at 
frame t+1

• Repeat, initializing with most recent frame.
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