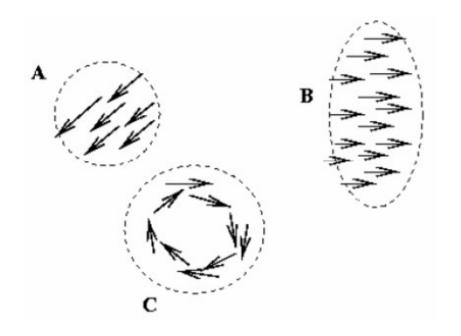


Motion and Tracking

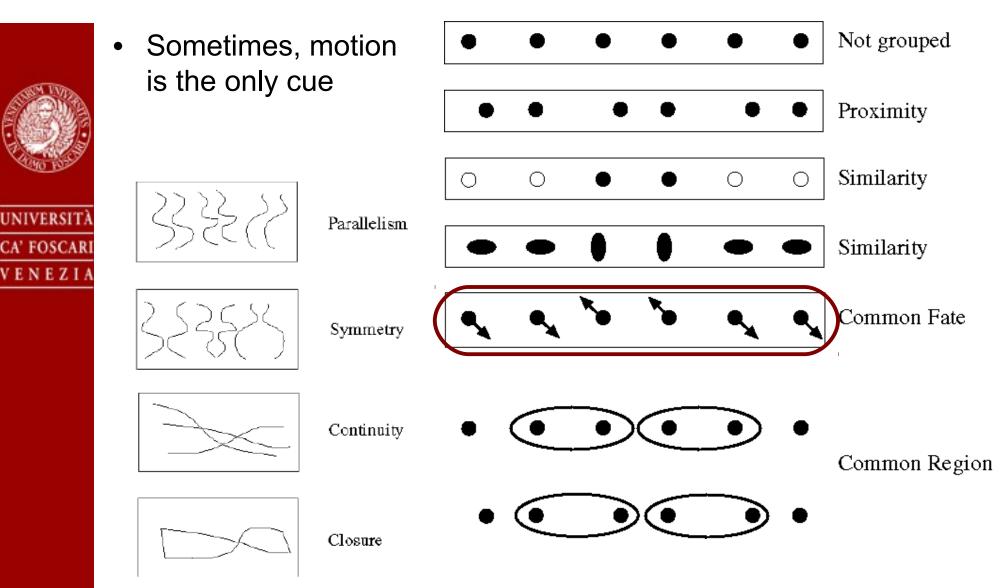
Andrea Torsello DAIS Università Ca' Foscari via Torino 155, 30172 Mestre (VE)

Motion Segmentation

- UNIVERSITÀ CA' FOSCARI V E N E Z I A
- Segment the video into multiple coherently moving objects



Motion and Perceptual Organization



Motion and Perceptual Organization

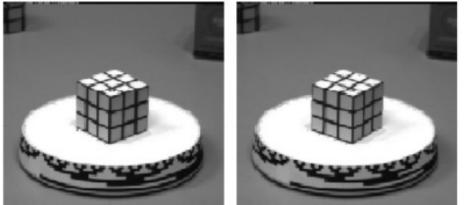
UNIVERSIT

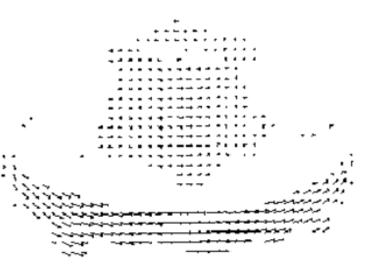
CA' FOSCAR

VENEZI

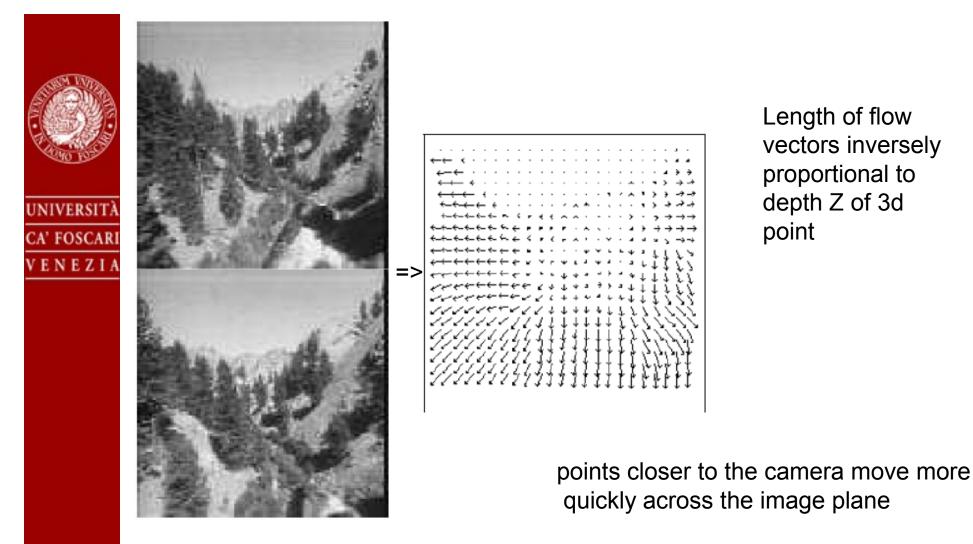
Motion Field

• The motion field is the projection of the 3D scene motion into the image

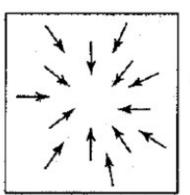


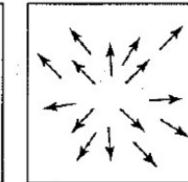


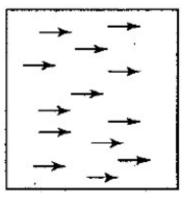
Motion field + camera motion



Motion field + camera motion







Zoom out

Zoom in

Pan right to left

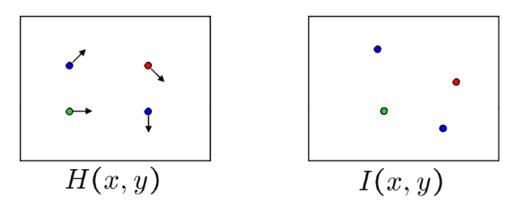
Motion Estimation Techniques

- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, fields but sensitive to appearance variations
 - Suitable for video and when image motion is small
- Feature-based methods
 - Extract visual features (corners, textured areas) and track them over multiple frames
 - Sparse motion fields, but more robust tracking
 - Suitable when image motion is large (10s of pixels)

Optical Flow

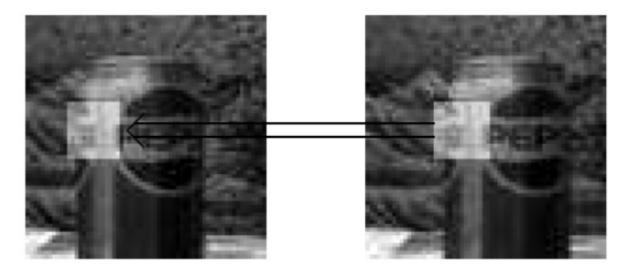
- Optical flow is the apparent motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion

Optical Flow



- How to estimate pixel motion from image H to image I?
 - Solve pixel correspondence problem: given a pixel in H, H look for nearby pixels of the same color in I
- Key assumptions
 - color constancy: a point in H looks the same in I
 - For grayscale images, this is brightness constancy
 - small motion: points do not move very far
- This is called the optical flow problem

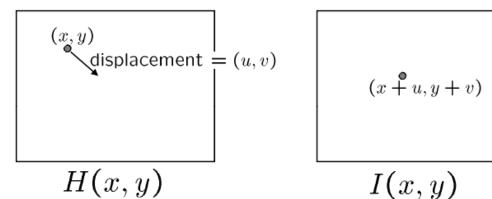
Brightness Constancy



The highlighted region in the right image looks roughly the same as the region in the left image

Optical Flow Constraints

ENEZI



- Brightness constancy:
 - H(x,y)=I(x+u,y+v)
 - Small motion:

$$I(x+u, y+v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

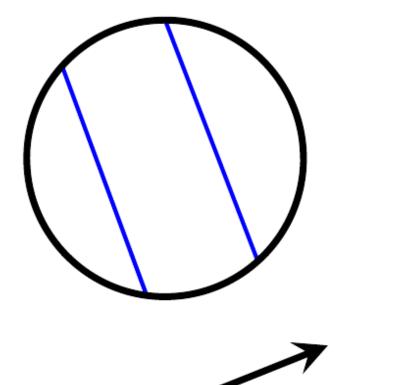
Combining these equations

$$0 = I(x+u, y+v) - H(x, y)$$

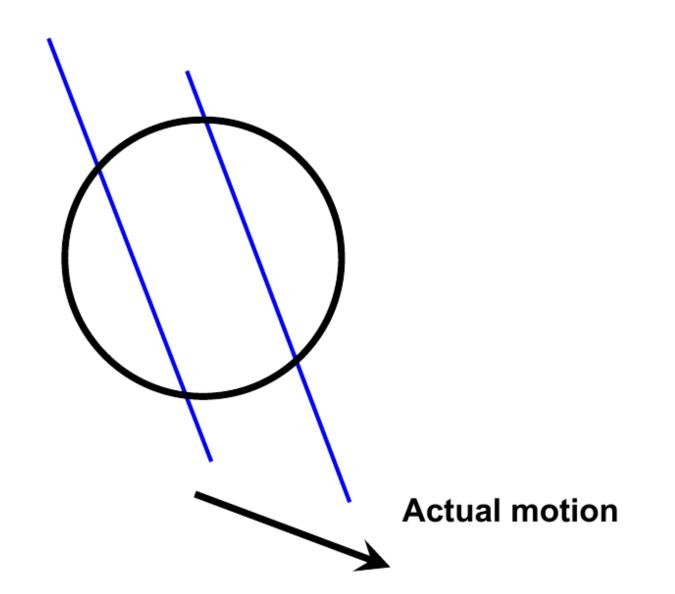
$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + \nabla I(u, v)^T$$

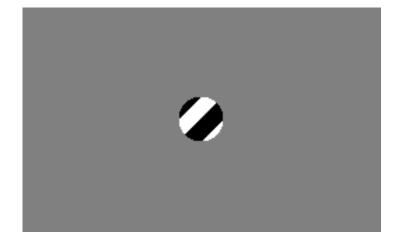
The Aperture Problem



Perceived motion



The barber pole illusion



The barber pole illusion

Solving the Aperture Problem

- How to get more equations for a pixel?
- Spatial coherence constraint: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Solving the Aperture Problem

- Prob: we have more equations than unknowns
- Solution: solve least squares problem

 $\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{ minimize } \|Ad - b\|^2$

- Solved by $(A^T A) d = A^T b$ $2 \times 2 2 \times 1 2 \times 1 2 \times 1$

JIVERSIT

CA' FOSCAR

ENEZI

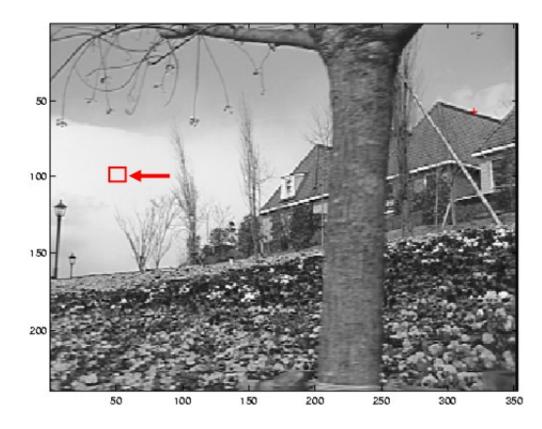
$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$
- When is this solvable?
 - A^T A should be invertible
 - A^T A should not be too small
 - eigenvalues $\lambda 1$ and $\lambda 2$ of A T A should not be too small
 - A^T A should be well-conditioned
 - $\lambda 1 / \lambda 2$ should not be too large ($\lambda 1$ = larger eigenvalue)

- gradients very large or very small
- large $\lambda 1$, small $\lambda 2$

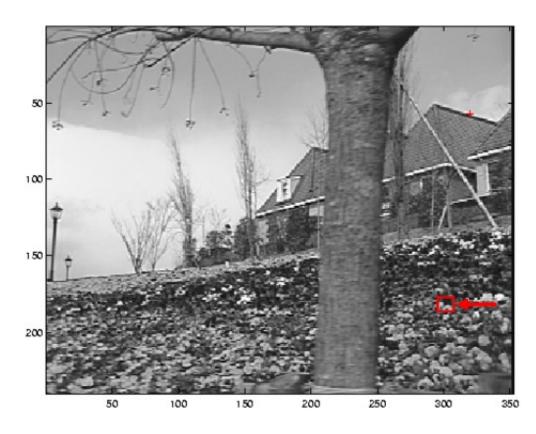
VENEZIA

Low-texture region



- gradients have small magnitude
- small $\lambda 1$, small $\lambda 2$

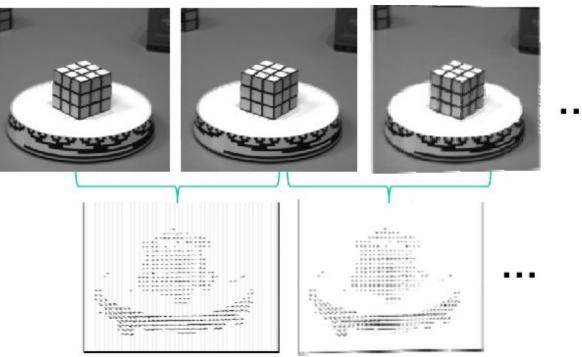
VENEZIA



- gradients are different, large magnitudes
- large $\lambda 1$, large $\lambda 2$

Optical flow for tracking

- UNIVERSITÀ CA' FOSCARI V E N E Z I A
- If we have more than just a pair of frames, we could compute flow from one to the next:

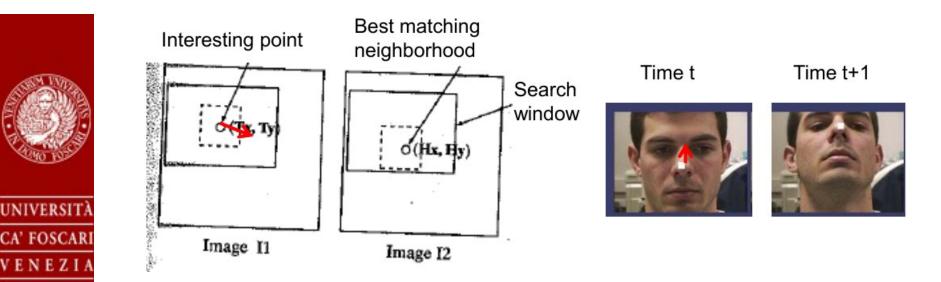


• But flow only reliable for small motions, and we may have occlusions, textureless regions that yield bad estimates anyway...

Motion Estimation Techniques

- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, fields but sensitive to appearance variations
 - Suitable for video and when image motion is small
- Feature-based methods
 - Extract visual features (corners, textured areas) and track them over multiple frames
 - Sparse motion fields, but more robust tracking
 - Suitable when image motion is large (10s of pixels)

Feature-based matching for motion



- Search window is centered at the point where we last saw the feature, in image 11
- Best match = position where we have the highest normalized crosscorrelation value
- Where should the search window be placed?
 - Near match at previous frame
 - More generally, taking into account the expected dynamics of the object

Detection vs. tracking

...

UNIVERSITÀ

CA' FOSCARI

VENEZIA

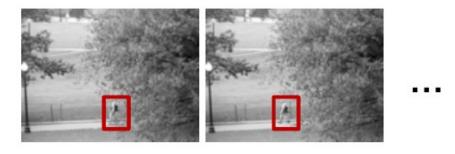
t=1

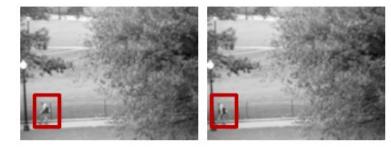
t=2

t=20

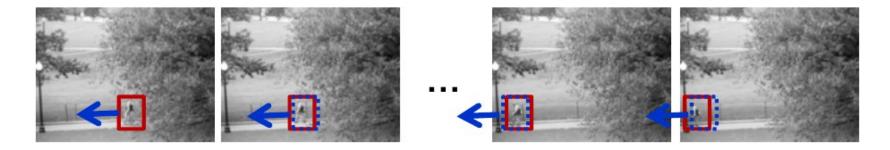
t=21

Detection vs. tracking





Detection: We detect the object independently in each frame and can record its position over time, e.g., based on blob's centroid or detection window coordinates



Tracking with dynamics: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

Tracking with dynamics

• Use model of expected motion to predict where objects will occur in next frame, even before seeing the image.

Intent:

FOSCAL

- Do less work looking for the object, restrict the search.
- Get improved estimates since measurement noise is tempered by smoothness, dynamics priors.
- Assumption: continuous motion patterns:
 - Camera is not moving instantly to new viewpoint
 - Objects do not disappear and reappear in different places in the scene
 - Gradual change in pose between camera and scene

Tracking as inference

- UNIVERSITÀ CA' FOSCARI V E N E Z I A
- The hidden state consists of the true parameters we care about, denoted X.
 - The measurement is our noisy observation that results from the underlying state, denoted Y.
 - At each time step, state changes (from $X_{t\mathchar`line1}$ to $X_t)$ and we get a new observation Y_t
 - Our goal: recover most likely state X_t given
 - All observations seen so far.
 - Knowledge about dynamics of state transitions.

Independence Assumptions

• Only immediate past state influences current state

FOSCA

$$P(\boldsymbol{X}_i|\boldsymbol{X}_1,\ldots,\boldsymbol{X}_{i-1}) = P(\boldsymbol{X}_i|\boldsymbol{X}_{i-1})$$

 Measurements at time i only depend on the current state

 $P(\boldsymbol{Y}_i, \boldsymbol{Y}_j, \dots, \boldsymbol{Y}_k | \boldsymbol{X}_i) = P(\boldsymbol{Y}_i | \boldsymbol{X}_i) P(\boldsymbol{Y}_j, \dots, \boldsymbol{Y}_k | \boldsymbol{X}_i)$

Tracking via deformable contours

- Use final contour/model extracted at frame t as an initial solution for frame t+1
- Evolve initial contour to fit exact object boundary at frame t+1
- Repeat, initializing with most recent frame.

FOSCAL

